静电力

点电荷相互作用力

F21=14πε0q1q2r122e12\vec{F}_{21} = \frac{1} {4 \pi \varepsilon_0} \frac{q_1q_2} {r_{12} ^2} \vec{e}_{12}

电力叠加原理

F=i=1nFi\vec{F} = \sum_{i=1} ^{n} \vec{F}_i

静电场

电场强度

E=Fq0\vec{E} = \frac{ \vec{F} } {q_0}

场强叠加原理

E=i=1nEi=14πε0i=1nqiri2ei\vec{E} = \sum_{i=1} ^{n} \vec{E}_i = \frac{1} {4 \pi \varepsilon_0} \sum_{i=1} ^{n} \frac{q_i} {r_i^2} \vec{e}_i

带电体场强

E=dE=14πε0Vdqr2er\vec{E} = \int \mathrm{d} \vec{E} = \frac{1} {4 \pi \varepsilon_0} \int_V \frac{\mathrm{d} q} {r^2} \vec{e}_r

常见场强模型

E点电荷=q4πε01r2er\vec{E}_{点电荷} = \frac{q} {4 \pi \varepsilon_0} \frac{1} {r^2} \vec{e}_r

E直线=λ2πε01aE_{直线} = \frac{\lambda} {2 \pi \varepsilon_0} \frac{1} {a}

E平面=σ2ε0E_{平面} = \frac{\sigma} {2 \varepsilon_0}

E=q4πε01R2+x23x1E_{环} = \frac{q} {4 \pi \varepsilon_0} \frac{1}{\sqrt{R^2 + x^2}^{3} x^{-1}}

E=q4πε02R2(1xR2+r2)E_{盘} = \frac{q} {4 \pi \varepsilon_0} \frac{2}{ R^2}(1 - \frac{x}{\sqrt{R^2 + r^2}})

E球面={0r<Rq4πε01r2r>RE_{球面} = \begin{cases} 0 & r < R \\ \frac{q} {4 \pi \varepsilon_0} \frac{1}{r^2} & r > R\end{cases}

E球体={q4πε01R3r1r<Rq4πε01r2r>RE_{球体} = \begin{cases}\frac{q} {4 \pi \varepsilon_0} \frac{1}{R^3 r^{-1}} & r < R \\ \frac{q} {4 \pi \varepsilon_0} \frac{1}{r^2} & r > R \end{cases}

电荷密度

λ=dqdl\lambda = \frac{\mathrm{d} q}{\mathrm{d}l}

σ=dqdS\sigma = \frac{\mathrm{d} q}{\mathrm{d}S}

ρ=dqdV\rho = \frac{\mathrm{d} q}{\mathrm{d}V}

电通量

Φe=SdΦe=SEcosθdS=SEdS\varPhi_e = \int_S \mathrm{d} \varPhi_e = \int_S E \cos\theta \mathrm{d} S = \int_S \vec{E} \cdot \mathrm{d} \vec{S}

高斯定理

Φe=SEdS=1ε0iqi\varPhi_e = \oint_S \vec{E} \cdot \mathrm{d} \vec{S} = \frac{1}{\varepsilon_0} \sum_i q_i

静电场环路定理

LEdl=0\oint_L \vec{E} \cdot \mathrm{d} \vec{l} = 0

电势

电势能

Wp=AP=Pq0EdlW_p = A_{P \infty} = \int^{\infty}_P q_0 \vec{E} \cdot \mathrm{d} \vec{l}

电势

UP=WPq0=PEdlU_P = \frac{W_P}{q_0} = \int^{\infty}_P \vec{E} \cdot \mathrm{d} \vec{l}

电势差

Uab=UaUb=abEdlU_{a b} = U_a - U_b = \int^b_a \vec{E} \cdot \mathrm{d} \vec{l}

电场力所做的功

Aab=q0abEdl=q0(UaUb)A_{a b} = q_0\int^b_a \vec{E} \cdot \mathrm{d} \vec{l} = q_0 (U_a - U_b)

电势叠加原理

UP=dU=dq4πε0rU_P = \int \mathrm{d} U = \int \frac{\mathrm{d} q}{4\pi\varepsilon_0 r}

常见电势模型

U点电荷=q4πε01rerU_{点电荷} = \frac{q} {4 \pi \varepsilon_0} \frac{1} {r} \vec{e}_r

U直线=λ2πε0lndaU_{直线} = \frac{\lambda} {2 \pi \varepsilon_0} \ln \frac{d}{a}

U平面=σ2ε0(Sx)U_{平面} = \frac{\sigma} {2 \varepsilon_0} (S - x)

U=q4πε01R2+x2U_{环} = \frac{q} {4 \pi \varepsilon_0} \frac{1}{\sqrt{R^2 + x^2}}

U=q4πε02R2(R2+x2x)U_{盘} = \frac{q} {4 \pi \varepsilon_0} \frac{2}{ R^2}(\sqrt{R^2 + x^2} - x)

U球面={q4πε01Rr<Rq4πε01rr>RU_{球面} = \begin{cases} \frac{q} {4 \pi \varepsilon_0} \frac{1}{R} & r < R \\ \frac{q}{4 \pi \varepsilon_0} \frac{1}{r} & r > R\end{cases}

U球体={q4πε012R(3r2R2)r<Rq4πε01rr>RU_{球体} = \begin{cases} \frac{q} {4 \pi \varepsilon_0} \frac{1}{2R} ( 3 - \frac{r^2}{R^2}) & r < R \\ \frac{q} {4 \pi \varepsilon_0} \frac{1}{r} & r > R \end{cases}

场强与电势关系

E=dUdnen=U\vec{E} = - \frac{\mathrm{d}U}{\mathrm{d}n} \vec{e}_n = - \nabla U

E=(xUi+yUj+zUk)\vec{E} = - (\partial_x U \vec{i} + \partial_y U \vec{j} + \partial_z U \vec{k})

电容

静电平衡与尖端放电

E=0E表面=σε0E_内 = 0 \quad E_{表面} = \frac{\sigma}{\varepsilon_0}

外电场内电场(接地)外电场 \nLeftrightarrow 内电场(接地)

电容

C=QUC = \frac{Q}{U}

C=4πε0RC_球 = 4 \pi \varepsilon_0 R

常见电容器模型

C=QUAUBC = \frac{Q}{U_A - U_B}

C=εrε0SdC_板 = \varepsilon_r \frac{\varepsilon_0 S}{d}

C=εr2πε0llnRBRAC_柱 = \varepsilon_r \frac{2 \pi \varepsilon_0 l}{ln \frac{R_B}{R_A}}

C=εr4πε01RA1RBC_球 = \varepsilon_r \frac{4 \pi \varepsilon_0 }{\frac{1}{R_A} - \frac{1}{R_B}}

求电容步骤

假设带电+qq求场强求电势差C=qUAUBC0=εrC0假设带电 +q -q \rightarrow 求场强 \rightarrow 求电势差 \rightarrow C = \frac{q}{U_A - U_B} \quad C_0 = \varepsilon_r C_0

电介质

介质效应

U=U0εrU = \frac{U_0}{\varepsilon_r}

C=εrC0C = \varepsilon_r C_0

E=E0εrE=E0+Eεr=1+χeE = \frac{E_0}{\varepsilon_r} \quad \vec{E} = \vec{E}_0 + \vec{E'} \quad \varepsilon_r = 1 + \chi_e

电极化强度矢量

P=PiΔV=ε0χeE单位:C/m2\vec{P} = \frac{\sum \vec{P}_i}{\Delta V} = \varepsilon_0 \chi_e \vec{E} \quad 单位:C/m^2

SPdS=Sq极化\oiint_S \vec{P} \cdot \mathrm{d} \vec{S} = - \sum_{S内} q'_{极化}

极化电荷面密度

σ极化=Pcosθ=Pn\sigma'_{极化} = P \cos \theta = P_n

电位移矢量

D=ε0E+P\vec{D} = \varepsilon_0 \vec{E} + \vec{P}

SDdS=q自由\oiint_S \vec{D} \cdot \mathrm{d} \vec{S} = \sum q_{自由}

电物理量关系

DE=DεEP=ε0χeEPσ=Pcosθσ\vec{D} \xrightarrow{\vec{E} = \frac{\vec{D}}{\varepsilon}} \vec{E} \xrightarrow{\vec{P} = \varepsilon_0 \chi_e \vec{E} } \vec{P} \xrightarrow{\sigma' = P \cos \theta}\sigma'

其中,ε=ε0εrχe=εr1σ为极化电荷密度其中,\varepsilon = \varepsilon_0 \varepsilon_r \quad \chi_e = \varepsilon_r -1 \quad \sigma'为极化电荷密度

静电场的能量

W点电荷=12qiUiW_{点电荷} = \frac{1}{2} \sum q_i U_i

W带电体=12UdqW_{带电体} = \frac{1}{2} \int U \mathrm{d} q

W电容器=12CU2W_{电容器} = \frac{1}{2} C U^2

能量密度:we=12DE能量密度:\mathcal{w}_e = \frac{1}{2} D E

W电场=wedV=ε0εrE22dVW_{电场} = \int \mathcal{w}_e \mathrm{d} V = \int \frac{\varepsilon_0 \varepsilon_r E^2}{2} \mathrm{d} V

其中,dV={4πr2dr2πrldrSdr其中,\mathrm{d} V = \begin{cases} 4 \pi r^2 \mathrm{d} r & 球 \\2 \pi r l \mathrm{d} r & 柱 \\ S \mathrm{d} r & 板 \\ \end{cases}

磁场作用力

洛伦兹力

F=qv×B\vec{F}_磁 = q \vec{v} \times \vec{B}

电磁场作用力

F=qv×B+qE\vec{F}_总 = q \vec{v} \times \vec{B} + q \vec{E}

安培力

dF=Idl×B\mathrm{d} \vec{F} = I \mathrm{d} \vec{l} \times \vec{B}

F=dF=dFx+dFy\vec{F} = \int \mathrm{d} \vec{F} = \int \mathrm{d} \vec{F}_x + \int \mathrm{d} \vec{F}_y

磁场

磁感应强度

B=Fmaxqv方向:Fmax×v单位:TB = \frac{F_{max}}{qv} \quad 方向:\vec{F}_{max} \times \vec{v} \quad 单位:T

毕奥-萨伐尔定律

dB=μ0Idl×r4πr3\mathrm{d} \vec{B} = \frac{\mu_0 I \mathrm{d} \vec{l} \times \vec{r}}{4 \pi r^3}

dB=μ0Idlsinθ4πr2\mathrm{d} B = \frac{\mu_0 I \mathrm{d} l \sin \theta}{4 \pi r^2}

I=dqdtI = \frac{\mathrm{d} q}{\mathrm{d} t}

运动电荷的磁场

B=dBdN=μ0qv×r4πr3\vec{B} = \frac{\mathrm{d} B}{\mathrm{d} N} = \frac{\mu_0 q \vec{v} \times \vec{r}}{4 \pi r^3}

磁通量

Φm=SdΦm=SBcosθdS=SBdS\varPhi_m = \int_S \mathrm{d} \varPhi_m = \int_S B \cos\theta \mathrm{d} S = \int_S \vec{B} \cdot \mathrm{d} \vec{S}

常见磁感应强度模型

B线=μ0I4πa(cosθ1cosθ2)B_{线} = \frac{\mu_0 I} {4 \pi a} (\cos \theta_1 - \cos \theta_2)

B直线=μ0I2πaB_{直线} = \frac{\mu_0 I} {2 \pi a}

B平面=μ0j2B_{平面} = \frac{\mu_0 j} {2}

B螺线管=μ02nI(cosβ2cosβ1)B=0B_{螺线管} = \frac{\mu_0}{2} n I (\cos \beta_2 - \cos \beta_1) \quad B_外 = 0

B螺绕环={0r<R1μ0nIR1<r<R20r>R2B_{螺绕环} = \begin{cases} 0 & r < R_1 \\ \mu_0 n I & R_1 < r < R_2 \\ 0 & r > R_2\end{cases}

B=μ0I21R2+x23R2圆心(x=0)处,B=μ0I2RB_{环} = \frac{\mu_0 I}{2} \frac{1}{\sqrt{R^2 + x^2}^3 R^{-2}} \quad 圆心(x = 0)处,B = \frac{\mu_0 I}{2 R}

B=μ0I2Rθ2πB_{弧} = \frac{\mu_0 I}{2 R} \frac{\theta}{2 \pi}

B柱面={0r<Rμ0I2πrr>RB_{柱面} = \begin{cases} 0 & r < R \\ \frac{\mu_0 I}{2 \pi r} & r > R\end{cases}

B柱体={μ0I2πR2rr<Rμ0I2πrr>RB_{柱体} = \begin{cases} \frac{\mu_0 I}{2 \pi \frac{R^2}{r}} & r < R \\ \frac{\mu_0 I}{2 \pi r} & r > R \end{cases}

电流面密度

σ=IS\sigma = \frac{I_总}{S_\perp}

高斯定理

Φm=SBdS=0\varPhi_m = \oint_S \vec{B} \cdot \mathrm{d} \vec{S} = 0

安培环路定理

LBdl=μ0Ii\oint_L \vec{B} \cdot \mathrm{d} \vec{l} = \mu_0 \sum I_i

注意I的正负与闭合回路环绕方向的关系注意 I 的正负与闭合回路环绕方向的关系

磁力矩

磁矩

Pm=IS=ISn\vec{P}_m = I \vec{S} = I S \vec{n}

磁力矩

M=Pm×B=NISn×B\vec{M} = \vec{P}_m \times \vec{B} = N I S \vec{n} \times \vec{B}

M=PmBsinθ=NISBsinθM = P_m B \sin \theta = N I S B \sin \theta

非均匀磁场中,M=r×dF非均匀磁场中,\vec{M} = \int \vec{r} \times \mathrm{d} \vec{F}

磁力的功

A=IΔΦA = I \Delta \varPhi

带电粒子在磁场中的运动

带电粒子在匀强磁场中的匀速圆周运动

qvB=mv2RR=mvqBT=2πmqBq v_{\perp} B =\frac{m v_{\perp}^2}{R} \quad R = \frac{m v_{\perp}}{q B} \quad T = \frac{2 \pi m}{q B}

霍尔效应

UH=RHIBhRH=1nqU_H = R_H \frac{I B}{h} \quad R_H = \frac{1}{n q}

磁介质

介质效应

{μr>>1铁磁质μr>1顺磁质μr<1抗磁质\begin{cases} \mu_r >> 1 & 铁磁质 \\ \mu_r > 1 & 顺磁质 \\ \mu_r < 1 & 抗磁质 \end{cases}

B=μrB0B=B0+Bμr=1+χmB = \mu_r B_0 \quad \vec{B} = \vec{B}_0 + \vec{B'} \quad \mu_r = 1 + \chi_m

磁化强度矢量

M=PmiΔV=χmH单位:A/m\vec{M} = \frac{\sum \vec{ P_{mi} } }{\Delta V} = \chi_m \vec{H} \quad 单位:A/m

SPdS=Sq极化\oiint_S \vec{P} \cdot \mathrm{d} \vec{S} = - \sum_{S内} q'_{极化}

磁化电流

M=jmjm=ImlLBdl=μ0(I+Im)\vert \vec{M} \vert = j_m \quad j_m = \frac{I_m}{l} \quad \oint_L \vec{B} \cdot \mathrm{d} \vec{l} = \mu_0(\sum I + \sum I_m)

磁场强度

H=B0μ0P\vec{H} = \frac{ \vec{B}_0 }{ \mu_0 } - \vec{P}

LHdl=inI0\oint_L \vec{H} \cdot \mathrm{d} \vec{l} = \sum_{in} I_{0}

磁物理量关系

ILHdl=LIHB=μHBM=χmHMjm=MjmIm=jmlImI \xrightarrow{\oint_L \vec{H} \cdot \mathrm{d} \vec{l} = \sum_L I} \vec{H} \xrightarrow{\vec{B} = \mu \vec{H}} \vec{B} \xrightarrow{\vec{M} = \chi_m \vec{H}} \vec{M} \xrightarrow{j_m = M} j_m \xrightarrow{I_m = j_m l} I_m

其中,μ=μ0μrχm=μr1jm为磁化电流Im为束缚电流其中,\mu = \mu_0 \mu_r \quad \chi_m = \mu_r -1 \quad j_m为磁化电流 \quad I_m为束缚电流

铁磁质

铁磁质特点、磁畴、磁滞回线、剩磁、矫顽力、居里点铁磁质特点、磁畴、磁滞回线、剩磁、矫顽力、居里点

电磁感应

感应电动势

Ei=dΦBdt=ddtSBdS\mathcal{E}_i = - \frac{\mathrm{d} \varPhi_B}{\mathrm{d} t} = -\frac{\mathrm{d}}{\mathrm{d}t}\iint_S \vec{B} \cdot \mathrm{d} \vec{S}

动生电动势

EK=v×BdEi=(v×B)dl\vec{E}_K = \vec{v} \times \vec{B} \quad \mathrm{d} \mathcal{E}_i = (\vec{v} \times \vec{B}) \cdot \mathrm{d} \vec{l}

Ei=abEKdl=ab(v×B)dl\mathcal{E}_i = \int^b_a \vec{E}_K \cdot \mathrm{d} \vec{l} = \int_a^b (\vec{v} \times \vec{B}) \cdot \mathrm{d} \vec{l}

E=Ei时,Ei=dΦBdt=BdSdt\mathcal{E}_总 = \mathcal{E}_i时,\mathcal{E}_i = - \frac{\mathrm{d} \varPhi_B}{\mathrm{d} t} = - B \frac{\mathrm{d} S}{\mathrm{d} t}

涡旋电场

LEidl=SBtdS\oint_L \vec{E}_i \cdot \mathrm{d} \vec{l} = - \iint_S \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{d} \vec{S}

Ei=r2dBdtE_{i内} = - \frac{r}{2} \frac{\mathrm{d} B}{\mathrm{d} t}

Ei=R22rdBdtE_{i外} = - \frac{R^2}{2 r} \frac{\mathrm{d} B}{\mathrm{d} t}

感生电动势

Ei=abEidl\mathcal{E}_{i} = \int_a^b \vec{E}_i \cdot \mathrm{d} \vec{l}

E=Ei时,Ei=dΦBdt=SdBdt\mathcal{E}_总 = \mathcal{E}_i时,\mathcal{E}_i = - \frac{\mathrm{d} \varPhi_B}{\mathrm{d} t} = - S \frac{\mathrm{d} B}{\mathrm{d} t}

自感

Φ=LI\varPhi = L I

EL=dΦdt=LdIdt\mathcal{E}_L = - \frac{\mathrm{d} \varPhi}{\mathrm{d} t} = - L \frac{\mathrm{d} I}{\mathrm{d} t}

L=ΦIL = \frac{\varPhi}{I}

L螺线管=μn2VL_{螺线管} = μ n^2 V

L=2WmI2L = \frac{2 W_m}{I^2}

互感

Φ2=MI1Φ2=MI2M=M21=M12\varPhi_2 = M I_1 \quad \varPhi_2 = M I_2 \quad M = M_{21} = M_{12}

E2=MdI1dtE1=MdI2dt\mathcal{E}_2 = - M \frac{\mathrm{d} I_{1}}{\mathrm{d} t} \quad \mathcal{E}_1 = - M \frac{\mathrm{d} I_{2}}{\mathrm{d} t}

E2=dΦB21dtI1E1=dΦB12dtI2\mathcal{E}_2 = - \frac{\mathrm{d} \varPhi_{B21}}{\mathrm{d} t} \vert_{I_1} \quad \mathcal{E}_1 = - \frac{\mathrm{d} \varPhi_{B12}}{\mathrm{d} t} \vert_{I_2}

M=ΦmIM = \frac{\varPhi_m}{I}

求自感/互感系数步骤

在易求磁场分布的线圈中假设通电流I求出相应的磁场分布计算相应的磁通量(面元法向只能取一个方向)求出L/M(I一定消去)在易求磁场分布的线圈中假设通电流I \rightarrow 求出相应的磁场分布 \rightarrow 计算相应的磁通量(面元法向只能取一个方向) \rightarrow 求出L/M(I一定消去)

磁场的能量

均匀磁场

磁能密度:wm=12BH=12μH2磁能密度:w_m = \frac{1}{2} \vec{B} \cdot \vec{H} = \frac{1}{2} \mu H^2

Wm=VwmdV=V12BHdVW_m = \int_V w_m \mathrm{d} V = \int_V \frac{1}{2} \vec{B} \cdot \vec{H} \mathrm{d} V

自感/互感磁能

Wm=12LID2W_m = \frac{1}{2} L I_D^2

W21=M21I1I2W_{21} = M_{21} I_1 I_2

电磁场与电磁波

位移电流

Id=dΦDdt\vec{I}_d = \frac{\mathrm{d} \varPhi_D}{\mathrm{d} t}

jd=dDdt\vec{j}_d = \frac{\mathrm{d} \vec{D}}{\mathrm{d} t}

jd平行板=dDdt=ε0εrdEdt=ε0εrddVdtId=jdSj_{d平行板} = \frac{\mathrm{d} D}{\mathrm{d} t} = \varepsilon_0 \varepsilon_r \frac{\mathrm{d} E}{\mathrm{d} t} = \frac{\varepsilon_0 \varepsilon_r}{d} \frac{\mathrm{d} V}{\mathrm{d} t} \quad I_d = j_d \cdot S

全电流安培环路定理

LHdl=I+IdId=πr2jd\oint_L \vec{H} \cdot \mathrm{d} \vec{l} = I + I_d' \quad I_d' = \pi r^2 j_d

麦克斯韦方程组

高斯定律:电荷总伴随有电场SDdS=inq=VρdV法拉第电磁感应:变化的磁场一定伴随有电场LEdl=dΦmdt=SBtdS高斯磁定律:磁感应线是无头无尾的SBdS=0麦克斯韦安培位移电流定律:变化的电场一定伴随着磁场LHdl=in(I+Id)=SjdS+SDtdS\begin{aligned} & 高斯定律 : 电荷总伴随有电场 \\ &\oiint_S \vec{D} \cdot \mathrm{d} \vec{S} = \sum_{in} q = \iiint_V \rho \mathrm{d} V \\ & 法拉第电磁感应 : 变化的磁场一定伴随有电场 \\ &\oint_L \vec{E} \cdot \mathrm{d} \vec{l} = - \frac{\mathrm{d} \varPhi_m}{\mathrm{d} t} = - \iint_S \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{d} \vec{S} \\ & 高斯磁定律 : 磁感应线是无头无尾的 \\ &\oiint_S \vec{B} \cdot \mathrm{d} \vec{S} = 0 \\ & 麦克斯韦-安培位移电流定律 : 变化的电场一定伴随着磁场 \\ &\oint_L \vec{H} \cdot \mathrm{d} \vec{l} = \sum_{in} (I + I_d) = \iint_S \vec{j} \mathrm{d} \vec{S} + \iint_S \frac{\partial \vec{D}}{\partial t} \cdot \mathrm{d} \vec{S} \\ \end{aligned}

电磁波的性质

EH=E0H0=με\frac{E}{H} = \frac{E_0}{H_0} = \sqrt{\frac{\mu}{\varepsilon}}

v=1εμv = \frac{1}{\sqrt{\varepsilon \mu}}

c=1ε0μ0c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}

电磁波的能量密度

w=we+wm=12εE2+12μH2w = w_e + w_m = \frac{1}{2} \varepsilon E^2 + \frac{1}{2} \mu H^2

电磁波的能流密度

坡印廷矢量:S=E×H坡印廷矢量:\vec{S} = \vec{E} \times \vec{H}

S=wvS = w v

Sˉ=12E0H0\bar{S} = \frac{1}{2} E_0 H_0

几何光学

符号规则

物距:与入射光同侧,s>0物距:与入射光同侧,s > 0

像距:与出射光同侧,s>0像距:与出射光同侧,s' > 0

曲率半径:与出射光同侧,R>0fR同符号曲率半径:与出射光同侧,R > 0;f与R同符号

垂直于轴的成像,轴上为正垂直于轴的成像,轴上为正

反射成像

平面镜:s=s平面镜:s = s'

球面镜:f=R21s+1s=1f球面镜:f = \frac{R}{2} \quad \frac{1}{s} + \frac{1}{s'} = \frac{1}{f}

单球面折射成像

n1s+n2s=n2n1R\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{R}

薄透镜成像公式

1s+1s=1fm=yy=ss\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \quad m = \frac{y'}{y} = - \frac{s'}{s}

磨镜者公式

1f=(n1)(1R11R2)\frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2})

光学器件

mθ放大镜=θθm_{\theta 放大镜} = \frac{\theta'}{\theta}

M显微镜=mθm=ss25cmfes=f0+ΔM_{显微镜} = m_{\theta}m = - \frac{s'}{s} \frac{25 cm}{f_e} \quad s' = f_0 + \Delta

mθ望远镜=f0fem_{\theta 望远镜} = - \frac{f_0}{f_e}

光的干涉

一般步骤

找到干涉的两条光线计算它们到叠加点的光程差考虑有无半波损失找到干涉的两条光线 \rightarrow 计算它们到叠加点 的光程差 \rightarrow 考虑有无半波损失

δ=n2r2n1r1+δ={±kλ,k=0,1,2,加强明纹±(k+12)λ,k=0,1,2,减弱暗纹\delta = n_2 r_2 - n_1 r_1 + \delta' = \begin{cases} \pm k \lambda & , k = 0, 1, 2, \dots 加强-明纹 \\ \pm (k + \frac{1}{2}) \lambda & , k = 0, 1, 2, \dots 减弱-暗纹\end{cases}

Δφ=2πλδ\Delta \varphi = \frac{2 \pi}{\lambda} \delta

杨氏双缝干涉

δ=dsinθ={±kλ,k=0,1,2,明纹±(k12)λ,k=1,2,3,暗纹(零级条纹在光程差为0)\delta = d \sin \theta = \begin{cases} \pm k \lambda & , k = 0, 1, 2, \dots 明纹 \\ \pm (k - \frac{1}{2}) \lambda & , k = 1, 2, 3, \dots 暗纹(零级条纹在光程差为0处)\end{cases}

Δx=xk+1xk=Ddλ\Delta x = x_{k + 1} - x_k = \frac{D}{d} \lambda

近轴条件下,dsinθdDx近轴条件下,d \sin \theta \approx \frac{d}{D} x

条纹移动意味着光程差改变:δ=δ1δ2=Nλ条纹移动意味着光程差改变:\delta = \delta_1 - \delta_2 = N \lambda

薄膜干涉一般步骤

确定薄膜,找到哪两条光线干涉确定是反射光还是透射光干涉确定有无半波损失由明暗条纹的干涉条件分析干涉条纹特征确定薄膜, 找到哪两条光线干涉 \rightarrow 确定是反射光还是透射光干涉 \rightarrow 确定有无半波损失 \rightarrow 由明暗条纹的干涉条件分析干涉条纹特征

等倾干涉

干涉条纹:内疏外密的同心圆干涉条纹:内疏外密的同心圆

δ=2en22n12sin2i+δ={kλ,k=1,2,3,明纹(k+12)λ,k=0,1,2,暗纹\delta = 2e \sqrt{n_2^2 - n_1^2 \sin^2 i} + \delta' = \begin{cases} k \lambda & , k = 1, 2, 3, \dots 明纹 \\ (k + \frac{1}{2}) \lambda & , k = 0, 1, 2, \dots 暗纹\end{cases}

等厚干涉-劈尖

δ=2ne+δ={kλ,k=1,2,3,明纹(k+12)λ,k=0,1,2,暗纹\delta = 2 n e + \delta' = \begin{cases} k \lambda & , k = 1, 2, 3,\dots 明纹 \\ (k + \frac{1}{2}) \lambda & , k = 0, 1, 2, \dots 暗纹\end{cases}

Δe=λ2n\Delta e = \frac{\lambda}{2n}

Δl=Δesinθλ2nθ\Delta l = \frac{\Delta e}{\sin \theta} \approx \frac{\lambda}{2 n \theta}

等厚干涉-牛顿环

干涉条纹:内疏外密的同心圆干涉条纹:内疏外密的同心圆

δ=2ne+δ={kλ,k=1,2,3,明纹(k+12)λ,k=0,1,2,暗纹\delta = 2 n e + \delta' = \begin{cases} k \lambda & , k = 1, 2, 3, \dots 明纹 \\ (k + \frac{1}{2}) \lambda & , k = 0, 1, 2, \dots 暗纹\end{cases}

e=r22Re = \frac{r^2}{2R}

r明环=(k12)Rλn,k=1,2,3,r_{明环} = \sqrt{(k - \frac{1}{2})\frac{R \lambda}{n}}, k = 1, 2, 3, \dots

r暗环=kRλn,k=0,1,2,r_{暗环} = \sqrt{k\frac{R \lambda}{n}}, k = 0, 1, 2, \dots

应用

迈克尔孙干涉仪:2d=ΔNλ迈克尔孙干涉仪:2 d = \Delta N \lambda

δ=2n2e=(k+12)λ,k=0,1,2,增透膜\delta = 2 n_2 e = (k + \frac{1}{2})\lambda , k = 0, 1, 2, \dots 增透膜

δ=2n2e+λ2=kλ,k=1,2,3,高反膜\delta = 2 n_2 e + \frac{\lambda}{2}= k \lambda , k = 1, 2, 3, \dots 高反膜

单缝衍射

δ=asinθ={0,中央明纹±kλ,k=1,2,3,暗纹±(k+12)λ,k=1,2,3,明纹\delta = a \sin \theta = \begin{cases} 0 & , 中央明纹 \\ \pm k \lambda & , k = 1, 2, 3, \dots 暗纹 \\ \pm (k + \frac{1}{2}) \lambda & , k = 1, 2, 3, \dots 明纹\end{cases}

xk=ftanθkθ5°时,sinθtanθθx_k = f \tan \theta_k \quad \theta \leqslant 5°时,\sin \theta \approx \tan \theta \approx \theta

Δx=fλaΔx中央明纹=2fλa\Delta x = \frac{f \lambda}{a} \quad \Delta x_{中央明纹} = \frac{2 f \lambda}{a}

光栅衍射

{dsinθ=±kλ,k=0,1,2,主极大明纹Ndsinθ=±kλ,k=1,2,3,,kkN极小暗纹\begin{cases}d \sin \theta = \pm k \lambda & , k = 0, 1, 2, \dots 主极大-明纹 \\ N d \sin \theta = \pm k' \lambda & , k = 1, 2, 3, \dots, k' \not= k N 极小-暗纹\end{cases}

缺极条件:dsinθ=k2λasinθ=k1λda=k2k1Z缺极条件:\begin{matrix}d \sin \theta = k_2 \lambda \\ a \sin \theta = k_1 \lambda\end{matrix} \Rightarrow \frac{d}{a} = \frac{k_2}{k_1} \in \mathbb{Z}

斜入射时的光栅方程:d(sinφ+sinθ)=±kλk=0,1,2,主极大斜入射时的光栅方程:d(\sin \varphi + \sin \theta) = \pm k \lambda \quad k = 0, 1, 2, \dots 主极大

φθ在法线的同侧同号,异侧异号;两侧kmax不同\varphi 和\theta 在法线的同侧同号,异侧异号;两侧 k_{max} 不同

分辨本领(分辨波长)R=λΔλkN分辨本领(分辨波长):R = \frac{\lambda}{\Delta \lambda} \leqslant k N

圆孔衍射

θ=1.22λDD为圆孔孔径\theta = 1.22 \frac{\lambda}{D} \quad D 为圆孔孔径

分辨本领(分辨波长)R=1θmin=D1.22λ分辨本领(分辨波长):R = \frac{1}{\theta_{min}} = \frac{D}{1.22 \lambda}

晶体衍射

布拉格方程:2dsinθ=kλk=1,2,3,布拉格方程:2 d \sin \theta = k \lambda \quad k = 1, 2, 3, \dots

其中θ为掠射角其中\theta 为掠射角

光的偏振

马吕斯定律

IA2AoAocosαI \propto A^2 \quad A_o \rightarrow A_o \cos \alpha

I出线=12I入自I_{出线} = \frac{1}{2} I_{入自}

I出线=I入线cos2αI_{出线} = I_{入线} \cos^2 \alpha

布儒斯特定律

tani0=n2n1i0+γ=π2\tan i_0 = \frac{n_2}{n_1} \Rightarrow i_0 + \gamma = \frac{\pi}{2}

此时有线偏振光此时有线偏振光

双折射现象

o光振动方向垂直于光轴,e光不符合折射定律o 光振动方向垂直于光轴,e 光不符合折射定律

δ=n0ned\delta = \vert n_0 - n_e \vert d

Δφ=2πλδ\Delta \varphi = \frac{2 \pi}{\lambda} \delta

δ12波片=n0ned=λ2\delta_{\frac{1}{2}波片} = \vert n_0 - n_e \vert d = \frac{\lambda}{2}

δ14波片=n0ned=λ4\delta_{\frac{1}{4}波片} = \vert n_0 - n_e \vert d = \frac{\lambda}{4}

偏振光的干涉

Δφ正交=2πλn0ned+π\Delta \varphi_{正交} = \frac{2 \pi}{\lambda} \vert n_0 - n_e \vert d + \pi

Ae2=Ao2=AcosαcosβA_{e2} = A_{o2} = A \cos \alpha \cos \beta

Δφ平行=2πλn0ned\Delta \varphi_{平行} = \frac{2 \pi}{\lambda} \vert n_0 - n_e \vert d

Ae2=Acos2αAo2=Acos2βA_{e2} = A \cos^2 \alpha \quad A_{o2} = A \cos^2 \beta

相强干涉与相消干涉相强干涉与相消干涉

椭圆偏振光

α=0°90°{是:出射与入射相同,为线偏振光否,使用12波片{是:出射与入射振动方向关于光轴对称否,使用12波片{α=45°:出射为圆偏振光α45°:出射为椭圆偏振光\alpha = 0° 或 90° ?\begin{cases}是:出射与入射相同,为线偏振光 \\ 否,使用 \frac{1}{2} 波片 \begin{cases}是:出射与入射振动方向关于光轴对称 \\ 否,使用 \frac{1}{2} 波片 \begin{cases} \alpha = 45°:出射为圆偏振光 \\ \alpha \ne 45°:出射为椭圆偏振光 \end{cases}\end{cases}\end{cases}

电磁辐射的量子性

黑体辐射

MB(T)=σT4M_B(T) = \sigma T^4

Tλm=bT \lambda_m = b

光电效应

eUa=Ekm=12mvmax2e U_a = E_{km} = \frac{1}{2} m v_{max}^2

红限波长:A=hν0=hcλ0红限波长:A = h \nu_0 = h \frac{c}{\lambda_0}

光的强度:I=Nhν光的强度:I = N h \nu

hν=Ekm+A=12mvmax2+Ah \nu = E_{km} + A = \frac{1}{2} m v_{max}^2 + A

康普顿散射

Δλ=λλ0=λc(1cosφ)=2λcsin2φ2\Delta \lambda = \lambda - \lambda_0 = \lambda_c(1 - \cos \varphi) = 2 \lambda_c \sin^2 \frac{\varphi}{2}

λc=hm0c=0.00243nm\lambda_c = \frac{h}{m_0 c} = 0.00243 nm

光的波粒二象性

E=hν=mc2=EkE = h \nu = m c^2 = E_k

m=hνc2=hλcm = \frac{h \nu}{c^2} = \frac{h}{\lambda c}

p=mc=hνc=hλp = m c = \frac{h \nu}{c} = \frac{h}{\lambda}

量子力学简介

德布罗意波

E=hν=mc2m=m01(vc)2E = h \nu = m c^2 \quad m = \frac{m_0}{\sqrt{1-(\frac{v}{c})^2}}

Ek=mc2m0c2E_k = m c^2 - m_0 c^2

m=hνc2=hλcm = \frac{h \nu}{c^2} = \frac{h}{\lambda c}

p=mv=hλvλνp = m v = \frac{h}{\lambda} \quad v \ne \lambda \nu

v<<c时,Ek=mc212m0v2=p22m0λ=hp=hm0vv << c 时,E_k = m c^2 \approx \frac{1}{2} m_0 v^2 = \frac{p^2}{2 m_0} \quad \lambda = \frac{h}{p} = \frac{h}{m_0 v}

不确定关系

ΔxΔpx2=h2π\Delta x \Delta p_x \geqslant \frac{\hbar}{2} \quad \hbar = \frac{h}{2 \pi}

由于p=hλΔp=hλ2Δλ由于 p = \frac{h}{\lambda} \quad \Delta p = \frac{h}{\lambda^2} \Delta \lambda

ΔEΔt2Δt为粒子在某能级的寿命有 \Delta E \Delta t \geqslant \frac{\hbar}{2} \quad \Delta t 为粒子在某能级的寿命

波函数及其统计意义

概率密度:fp(x)=φ(x)2概率密度:f_p(x) = \vert \varphi (x) \vert^2

dx范围内出现粒子的概率:φ(x)2dx在 \mathrm{d} x 范围内出现粒子的概率:\vert \varphi (x) \vert^2 \mathrm{d} x

波函数单值、有限、连续时,+φ(x)2dx=1A波函数单值、有限、连续时,\int_{- \infty}^{+ \infty} \vert \varphi (x) \vert^2 \mathrm{d} x = 1 \Rightarrow A

定态薛定谔方程与一维无限深势阱

零点能:E1=π222ma2n能级能量:En=n2E1零点能:E_1 = \frac{\pi^2 \hbar^2}{2 m a^2} \quad n能级能量:E_n = n^2 E_1

ψn(x)=2asin(nπax)0xan=1,2,3,\psi_n(x) = \sqrt{\frac{2}{a}} \sin (\frac{n \pi}{a} x) \quad 0 \leqslant x \leqslant a \quad n = 1, 2, 3, \dots

概率密度:fp(x)=ψn(x)2=2asin2(nπax)0xan=1,2,3,概率密度:f_p(x) = \vert \psi_n(x) \vert^2 = \frac{2}{a} \sin^2 (\frac{n \pi}{a} x) \quad 0 \leqslant x \leqslant a \quad n = 1, 2, 3, \dots

xx+dx概率:dP=ψn(x)2dx=2asin2(nπax)dx0xan=1,2,3,x ~ x + \mathrm{d} x 概率:\mathrm{d} P = \vert \psi_n(x) \vert^2 \mathrm{d} x = \frac{2}{a} \sin^2 (\frac{n \pi}{a} x) \mathrm{d} x \quad 0 \leqslant x \leqslant a \quad n = 1, 2, 3, \dots

x1x2概率:P=x1x2ψn(x)2dx=x1x22asin2(nπax)dx0xan=1,2,3,x_1 ~ x_2 概率:P = \int_{x_1}^{x_2} \vert \psi_n(x) \vert^2 \mathrm{d} x = \int_{x_1}^{x_2} \frac{2}{a} \sin^2 (\frac{n \pi}{a} x) \mathrm{d} x \quad 0 \leqslant x \leqslant a \quad n = 1, 2, 3, \dots

氢原子及原子结构初步

氢光谱的规律

1λ=RH(1k21n2)k=1,2,3,;n=k+1,k+2,k+3,\frac{1}{\lambda} = R_H (\frac{1}{k^2} - \frac{1}{n^2}) \quad k = 1, 2, 3, \dots ; n = k+1, k+2, k+3, \dots

{k=1,紫外线系k=2,巴尔末线系k=3,红外线系\begin{cases} k = 1,紫外线系 \\ k = 2,巴尔末线系 \\ k = 3,红外线系 \end{cases}

玻尔氢原子理论

En=13.6n2eVn=1,2,3,E_n = - \frac{13.6}{n^2} eV \quad n = 1, 2, 3, \dots

rn=n2r1n=1,2,3,r_n = n^2 r_1 \quad n = 1, 2, 3, \dots

hν=hcλ=EnEkh \nu = \frac{h c}{\lambda} = E_n - E_k

横线上密下疏,数量为n;同线系箭头向下,起点向右递增,终点相同;能画出n1个线系横线上密下疏,数量为 n ;同线系箭头向下,起点向右递增,终点相同;能画出 n - 1 个线系

氢原子的量子力学描述

主量子数nEn=13.6n2eVn=1,2,3,主量子数 n :E_n = - \frac{13.6}{n^2} eV \quad n = 1, 2, 3, \dots

角量子数lL=l(l+1)l=0,1,2,,n1角量子数 l :L = \sqrt{l(l + 1)} \hbar \quad l = 0, 1, 2, \dots , n - 1

磁量子数mlLZ=mlml=0,±1,±2,,±l磁量子数 m_l :L_Z = m_l \hbar \quad m_l = 0, \pm 1, \pm 2, \dots , \pm l

自旋磁量子数msS=s(s+1)=32SZ=mS=±12自旋磁量子数 m_s :S = \sqrt{s(s + 1)} \hbar = \frac{\sqrt{3}}{2} \hbar \quad S_Z = m_S \hbar = \pm \frac{1}{2} \hbar

某一能级可容纳的最多电子数为2n2,某一层可容纳的最多电子数为2(2l+1)某一能级可容纳的最多电子数为 2 n^2 个, 某一层可容纳的最多电子数为 2(2 l + 1) 个

波尔理论:L=mvr=n量子力学:L=l(l+1)波尔理论:L = m v r = n \hbar \quad 量子力学:L = \sqrt{l(l + 1)} \hbar

核外电子径向概率密度:P(r)=r2Rnl(r)2核外电子径向概率密度:P(r) = r^2 \vert R_{nl}(r) \vert^2

激光与固体的能带结构

激光产生条件与特性

粒子数反转(受激辐射);光放大(光学谐振腔)粒子数反转(受激辐射);光放大(光学谐振腔)

方向性好;亮度高;单色性好;相干性好方向性好;亮度高;单色性好;相干性好

固体能带结构

p型半导体,空穴导电,掺入3价金属;n型半导体,电子导电,掺入5价金属p 型半导体,空穴导电,掺入3价金属; n 型半导体,电子导电,掺入5价金属

禁带宽度与外加光子能量关系:hνEg禁带宽度与外加光子能量关系: h \nu \geqslant E_g