文中表格来自于《概率论与数理统计》,主要内容:

  • 常见分布的分布律、期望、方差
  • 正态总体均值、方差的置信区间、单侧置信限
  • 正态总体均值、方差检验,包含原假设、备择假设、检验统计量、拒绝域、P_P\_
  • 方差分析检验与拟合优度检验
  • 方差分析表

几种常见的概率分布表

分布 参数范围 概率分布律或密度函数 数学期望 方差
(01)(0-1) 分布 0<p<10<p<1 P{X=k}=pk(1p)1k,k=0,1P\{X=k\}=p^k(1-p)^{1-k},k=0,1 pp p(1p)p(1-p)
二项分布 n10<p<1n\geqslant1 \\ 0<p<1 P{X=k}=Cnkpk(1p)nk,k=0,1,,nP\{X=k\}=C_n^kp^k(1-p)^{n-k},k=0,1,\cdots,n npnp np(1p)np(1-p)
负二项分布(巴斯卡分布) r10<p<1r\geqslant1 \\ 0<p<1 P{X=k}=Ck1r1pr(1p)kr,k=r,r+1,P\{X=k\}=C_{k-1}^{r-1}p^r(1-p)^{k-r},k=r,r+1,\cdots rp\cfrac{r}{p} r(1p)p2\cfrac{r(1-p)}{p^2}
几何分布 0<p<10<p<1 P{X=k}=p(1p)k1,k=1,2,P\{X=k\}=p(1-p)^{k-1},k=1,2,\cdots 1p\cfrac{1}{p} 1pp2\cfrac{1-p}{p^2}
超几何分布 MNnNM\leqslant N \\ n\leqslant N P{X=k}=CMkCNMnkCNn,max(0,nN+M)kmin(n,M)P\{X=k\}=\cfrac{C^k_MC^{n-k}_{N-M}}{C^n_N},max(0,n-N+M)\leqslant k\leqslant min(n,M) nMN\cfrac{nM}{N} nMN(1MN)NnN1\cfrac{nM}{N}(1-\cfrac{M}{N})\cfrac{N-n}{N-1}
泊松分布 λ>0\lambda >0 P{X=k}=λkeλk!,k=0,1,2,P\{X=k\}=\cfrac{\lambda^ke^{-\lambda}}{k!},k=0,1,2,\cdots λ\lambda λ\lambda
均匀分布 a<ba<b f(x)={1ba,a<x<b0,otherwisef(x)=\begin{cases}\cfrac{1}{b-a}&,a<x<b \\ 0&,\mathrm{otherwise}\end{cases} a+b2\cfrac{a+b}{2} (ba)212\cfrac{(b-a)^2}{12}
正态分布 μ,σ>0\mu,\sigma>0 f(x)=12πσe12(xμσ)2f(x)=\cfrac{1}{\sqrt{2\pi}\sigma}e^{-\cfrac{1}{2}(\cfrac{x-\mu}{\sigma})^2} μ\mu σ2\sigma^2
标准正态分布 μ=0,σ=1\mu=0,\sigma=1 f(x)=12πe12x2f(x)=\cfrac{1}{\sqrt{2\pi}}e^{-\cfrac{1}{2}x^2} 00 11
指数分布 λ>0\lambda >0 f(x)={λeλx,x>00,otherwisef(x)=\begin{cases}\lambda e^{-\lambda x}&,x>0 \\ 0&,\mathrm{otherwise}\end{cases} 1λ\cfrac{1}{\lambda} 1λ2\cfrac{1}{\lambda^2}
Γ\Gamma 分布 α>0,β>0\alpha>0,\beta>0 f(x)={βαΓ(α)xα1eβx,x>00,otherwisef(x)=\begin{cases}\cfrac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}&,x>0 \\ 0&,\mathrm{otherwise}\end{cases} αβ\cfrac{\alpha}{\beta} αβ2\cfrac{\alpha}{\beta^2}
χ2\chi^2 分布 n1n\geqslant 1 f(x)={12n2Γ(n2)xn21ex2,x>00,otherwisef(x)=\begin{cases}\cfrac{1}{2^{\cfrac{n}{2}}\Gamma(\cfrac{n}{2})}x^{\cfrac{n}{2}-1}e^{-\cfrac{x}{2}}&,x>0 \\ 0&,\mathrm{otherwise}\end{cases} nn 2n2n
威布尔分布 η>0,β>0\eta>0,\beta>0 f(x)={βη(xη)β1e(xη)β,x>00,otherwisef(x)=\begin{cases}\cfrac{\beta}{\eta}(\cfrac{x}{\eta})^{\beta-1}e^{-(\cfrac{x}{\eta})^\beta}&,x>0 \\ 0&,\mathrm{otherwise}\end{cases} ηΓ(1β+1)\eta\Gamma(\cfrac{1}{\beta}+1) η2(Γ(2β+1)Γ(1β+1)2)\eta^2(\Gamma(\cfrac{2}{\beta}+1)-\Gamma(\cfrac{1}{\beta}+1)^2)
瑞利分布 σ>0\sigma>0 f(x)={xσ2e(x2σ)2,x>00,otherwisef(x)=\begin{cases}\cfrac{x}{\sigma^2}e^{-(\cfrac{x}{2\sigma})^2}&,x>0 \\ 0&,\mathrm{otherwise}\end{cases} π2σ\sqrt{\cfrac{\pi}{2}}\sigma 4π2σ2\cfrac{4-\pi}{2}\sigma^2
β\beta 分布 α>0,β>0\alpha>0,\beta>0 f(x)={Γ(α+β)Γ(α)Γ(β)xα1(1x)β1,0<x<10,otherwisef(x)=\begin{cases}\cfrac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}&,0<x<1 \\ 0&,\mathrm{otherwise}\end{cases} αα+β\cfrac{\alpha}{\alpha+\beta} αβ(α+β)2(α+β+1)\cfrac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}
对数正态分布 μ,σ>0\mu,\sigma>0 f(x)={12πσxe(lnxμ2σ)2,x>00,otherwisef(x)=\begin{cases}\cfrac{1}{\sqrt{2\pi}\sigma x}e^{-(\cfrac{ln x-\mu}{2\sigma})^2}&,x>0 \\ 0&,\mathrm{otherwise}\end{cases} eμ+σ22e^{\mu+\cfrac{\sigma^2}{2}} e2μ+σ2(eσ21)e^{2\mu+\sigma^2}(e^{\sigma^2}-1)
柯西分布 a,λ>0a,\lambda>0 f(x)=1πλλ2+(xa)2f(x)=\cfrac{1}{\pi}\cfrac{\lambda}{\lambda^2+(x-a)^2} nullnull nullnull
tt 分布 n0n\geqslant 0 f(x)=Γ(n+12)nπΓ(n2)(1+x2n)n+12f(x)=\cfrac{\Gamma(\cfrac{n+1}{2})}{\sqrt{n\pi}\Gamma(\cfrac{n}{2})}(1+\cfrac{x^2}{n})^{-\cfrac{n+1}{2}} 0,n>10,n>1 nn2,n>2\cfrac{n}{n-2},n>2
FF 分布 n1,n2n_1,n_2 f(x)={Γ(n1+n22)Γ(n12)Γ(n22)(n1n2)(n1n2x)n121(1+n1n2x)n1+n22,x>00,otherwisef(x)=\begin{cases}\cfrac{\Gamma(\cfrac{n_1+n_2}{2})}{\Gamma(\cfrac{n_1}{2})\Gamma(\cfrac{n_2}{2})}(\cfrac{n_1}{n_2})(\cfrac{n_1}{n_2}x)^{\cfrac{n_1}{2}-1}(1+\cfrac{n_1}{n_2}x)^{-\cfrac{n_1+n_2}{2}}&,x>0 \\ 0&,otherwise\end{cases} n2n22,n2>2\cfrac{n_2}{n_2-2},n_2>2 2n22(n1+n22)n1(n22)2(n24),n2>4\cfrac{2n_2^2(n_1+n_2-2)}{n_1(n_2-2)^2(n_2-4)},n_2>4

正态总体均值、方差的置信区间、单侧置信限

待估参数 其他参数 枢轴量的分布 置信区间 单侧置信限(U) 单侧置信限(L)
μ\mu σ2已知\sigma^2 \\ \text{已知} Z=Xμσ/nN(0,1)Z=\cfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1) (Xσnzα/2,X+σnzα/2)(\overline{X}-\cfrac{\sigma}{\sqrt{n}}z_{\alpha/2} ,\\ \overline{X}+\cfrac{\sigma}{\sqrt{n}}z_{\alpha/2}) μ^U=X+σnzα\widehat{\mu}_U=\overline{X}+\cfrac{\sigma}{\sqrt{n}}z_{\alpha} μ^L=Xσnzα\widehat{\mu}_L=\overline{X}-\cfrac{\sigma}{\sqrt{n}}z_{\alpha}
μ\mu σ2未知\sigma^2 \\ \text{未知} t=XμS/nt(n1)t=\cfrac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1) (XSntα/2(n1),X+Sntα/2(n1))(\overline{X}-\cfrac{S}{\sqrt{n}}t_{\alpha/2}(n-1) ,\\ \overline{X}+\cfrac{S}{\sqrt{n}}t_{\alpha/2}(n-1)) μ^U=X+Sntα(n1)\widehat{\mu}_U=\overline{X}+\cfrac{S}{\sqrt{n}}t_{\alpha(n-1)} μ^L=XSntα(n1)\widehat{\mu}_L=\overline{X}-\cfrac{S}{\sqrt{n}}t_{\alpha(n-1)}
σ2\sigma^2 μ已知\mu \\ \text{已知} χ2=(n1)S2σ2χ2(n1)\chi^2=\cfrac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) ((n1)S2χα/22(n1),(n1)S2χ1α/22(n1))(\cfrac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)} ,\\ \cfrac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}) σ^U2=(n1)S2χ1α2(n1)\widehat{\sigma}^2_U=\cfrac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)} σ^L2=(n1)S2χα2(n1)\widehat{\sigma}^2_L=\cfrac{(n-1)S^2}{\chi^2_{\alpha}(n-1)}
μ1μ2\mu_1-\mu_2 σ12,σ22已知\sigma_1^2,\sigma_2^2 \\ \text{已知} Z=(XY)(μ1μ2)σ12/n1+σ22/n2N(0,1)Z=\cfrac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n2}}\sim N(0,1) (XYzα/2σ12/n1+σ22/n2,XY+zα/2σ12/n1+σ22/n2)(\overline{X}-\overline{Y}-z_{\alpha/2}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}} ,\\ \overline{X}-\overline{Y}+z_{\alpha/2}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}}) μ1μ2^U=XY+zασ12/n1+σ22/n2\widehat{\mu_1-\mu_2}_U=\overline{X}-\overline{Y}+z_{\alpha}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n2}} μ1μ2^L=XYzασ12/n1+σ22/n2\widehat{\mu_1-\mu_2}_L=\overline{X}-\overline{Y}-z_{\alpha}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n2}}
μ1μ2\mu_1-\mu_2 σ12=σ22未知\sigma_1^2=\sigma_2^2 \\ \text{未知} t=(XY)(μ1μ2)Sw1/n1+1/n2t(n1+n22)Sw2=(n11)S12+(n21)S22n1+n22t=\cfrac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{1/n_1+1/n2}}\sim t(n_1+n_2-2) \\ S^2_w=\cfrac{(n_1-1)S^2_1+(n_2-1)S^2_2}{n_1+n_2-2} (XYtα/2(n1+n22)Sw1/n1+2/n2,XY+tα/2(n1+n22)Sw1/n1+2/n2)(\overline{X}-\overline{Y}-t_{\alpha/2}(n_1+n_2-2)S_w{\sqrt{1/n_1+2/n_2}} ,\\ \overline{X}-\overline{Y}+t_{\alpha/2}(n_1+n_2-2)S_w{\sqrt{1/n_1+2/n_2}}) μ1μ2^U=XY+tα(n1+n22)Sw1/n1+2/n2\widehat{\mu_1-\mu_2}_U=\overline{X}-\overline{Y}+t_{\alpha}(n_1+n_2-2)S_w{\sqrt{1/n_1+2/n_2}} μ1μ2^L=XYtα(n1+n22)Sw1/n1+2/n2\widehat{\mu_1-\mu_2}_L=\overline{X}-\overline{Y}-t_{\alpha}(n_1+n_2-2)S_w{\sqrt{1/n_1+2/n_2}}
μ1μ2\mu_1-\mu_2 σ12σ22未知\sigma_1^2\ne \sigma_2^2 \\ \text{未知} t=(XY)(μ1μ2)S12/n1+S22/n2{N(0,1),n1>50,n2>50t(k),k=min(n11,n21)t=\cfrac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{S_1^2/n_1+S_2^2/n2}} \\ \begin{cases}\sim N(0,1)&,n_1>50,n_2>50 \\ \sim t(k)&,k=min(n_1-1,n_2-1)\end{cases} (XYqα/2S12/n1+S22/n2,XY+qα/2S12/n1+S22/n2)qp={zp,tN(0,1)tp(k),tt(k)(\overline{X}-\overline{Y}-q_{\alpha/2}\sqrt{S_1^2/n_1+S_2^2/n2} ,\\ \overline{X}-\overline{Y}+q_{\alpha/2}\sqrt{S_1^2/n_1+S_2^2/n2}) \\ q_p=\begin{cases}z_p&,t\sim N(0,1) \\ t_p(k)&,t\sim t(k)\end{cases} μ1μ2^U=XY+qαS12/n1+S22/n2\widehat{\mu_1-\mu_2}_U=\overline{X}-\overline{Y}+q_{\alpha}\sqrt{S_1^2/n_1+S_2^2/n2} μ1μ2^L=XYqαS12/n1+S22/n2\widehat{\mu_1-\mu_2}_L=\overline{X}-\overline{Y}-q_{\alpha}\sqrt{S_1^2/n_1+S_2^2/n2}
σ12/σ22\sigma_1^2/\sigma_2^2 μ1,μ2未知\mu_1,\mu_2 \\ \text{未知} F=S12/S22σ12/σ22F(n11,n21)F=\cfrac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1) (S12/S22Fα/2(n11,n21),S12/S22F1α/2(n11,n21))(\cfrac{S_1^2/S_2^2}{F_{\alpha/2}(n_1-1,n_2-1)} ,\\ \cfrac{S_1^2/S_2^2}{F_{1-\alpha/2}(n_1-1,n_2-1)}) σ12σ22^U=S12/S22F1α(n11,n21)\widehat{\sigma_1^2-\sigma_2^2}_U=\cfrac{S_1^2/S_2^2}{F_{1-\alpha}(n_1-1,n_2-1)} σ12σ22^L=S12/S22Fα(n11,n21)\widehat{\sigma_1^2-\sigma_2^2}_L=\cfrac{S_1^2/S_2^2}{F_{\alpha}(n_1-1,n_2-1)}

正态总体均值、方差的检验法

原假设H0H_0 检验统计量 备择假设H1H_1 拒绝域 检验统计量的取值 P_P\_
μμ0μμ0μ=μ0(σ2已知)\mu\leqslant\mu_0 \\ \mu\geqslant\mu_0 \\ \mu=\mu_0 \\ (\sigma^2\text{已知}) Z=Xμ0σ/nZ=\cfrac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} μ>μ0μ<μ0μμ0\mu>\mu_0 \\ \mu<\mu_0 \\ \mu\ne\mu_0 ZzαZzαZzα/2Z\geqslant z_\alpha \\ Z\leqslant-z_\alpha \\ \vert Z\vert\geqslant z_{\alpha/2} z0=xμ0σ/nz_0=\cfrac{\overline{x}-\mu_0}{\sigma/\sqrt{n}} 1Φ(z0)Φ(z0)2(1Φ(z0))1-\Phi(z_0) \\ \Phi(z_0) \\ 2(1-\Phi(\vert z_0\vert))
μμ0μμ0μ=μ0(σ2未知)\mu\leqslant\mu_0 \\ \mu\geqslant\mu_0 \\ \mu=\mu_0 \\ (\sigma^2\text{未知}) T=Xμ0S/nT=\cfrac{\overline{X}-\mu_0}{S/\sqrt{n}} μ>μ0μ<μ0μμ0\mu>\mu_0 \\ \mu<\mu_0 \\ \mu\ne\mu_0 Ttα(n1)Ttα(n1)Ttα/2(n1)T\geqslant t_\alpha(n-1) \\ T\leqslant-t_\alpha(n-1) \\ \vert T\vert\geqslant t_{\alpha/2}(n-1) t0=xμ0s/nt_0=\cfrac{\overline{x}-\mu_0}{s/\sqrt{n}} P(t(n1)t0)P(t(n1)t0)2P(t(n1)t0)P(t(n-1)\geqslant t_0) \\ P(t(n-1)\leqslant t_0) \\ 2P(t(n-1)\geqslant\vert t_0\vert)
μ1μ2δμ1μ2δμ1μ2=δ(σ12,σ22已知)\mu_1-\mu_2\leqslant\delta \\ \mu_1-\mu_2\geqslant\delta \\ \mu_1-\mu_2=\delta \\ (\sigma_1^2,\sigma_2^2\text{已知}) Z=XYδσ12n1+σ22n2Z=\cfrac{\overline{X}-\overline{Y}-\delta}{\sqrt{\cfrac{\sigma_1^2}{n_1}+\cfrac{\sigma_2^2}{n_2}}} μ1μ2>δμ1μ2<δμ1μ2δ\mu_1-\mu_2>\delta \\ \mu_1-\mu_2<\delta \\ \mu_1-\mu_2\ne\delta ZzαZzαZzα/2Z\geqslant z_\alpha \\ Z\leqslant-z_\alpha \\ \vert Z\vert\geqslant z_{\alpha/2} z0=xyδσ12n1+σ22n2z_0=\cfrac{\overline{x}-\overline{y}-\delta}{\sqrt{\cfrac{\sigma_1^2}{n_1}+\cfrac{\sigma_2^2}{n_2}}} 1Φ(z0)Φ(z0)2(1Φ(z0))1-\Phi(z_0) \\ \Phi(z_0) \\ 2(1-\Phi(\vert z_0\vert))
μ1μ2δμ1μ2δμ1μ2=δ(σ12=σ22未知)\mu_1-\mu_2\leqslant\delta \\ \mu_1-\mu_2\geqslant\delta \\ \mu_1-\mu_2=\delta \\ (\sigma_1^2=\sigma_2^2\text{未知}) T=XYδSw1n1+1n2Sw2=(n11)S12+(n21)S22n1+n22T=\cfrac{\overline{X}-\overline{Y}-\delta}{S_w\sqrt{\cfrac{1}{n_1}+\cfrac{1}{n_2}}} \\ S_w^2=\cfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} μ1μ2>δμ1μ2<δμ1μ2δ\mu_1-\mu_2>\delta \\ \mu_1-\mu_2<\delta \\ \mu_1-\mu_2\ne\delta Ttα(n1+n22)Ttα(n1+n22)Ttα/2(n1+n22)T\geqslant t_\alpha(n_1+n_2-2) \\ T\leqslant-t_\alpha(n_1+n_2-2) \\ \vert T\vert\geqslant t_{\alpha/2}(n_1+n_2-2) t0=xyδsw1n1+1n2t_0=\cfrac{\overline{x}-\overline{y}-\delta}{s_w\sqrt{\cfrac{1}{n_1}+\cfrac{1}{n_2}}} P(t(n1+n22)t0)P(t(n1+n22)t0)2P(t(n1+n22)t0)P(t(n_1+n_2-2)\geqslant t_0) \\ P(t(n_1+n_2-2)\leqslant t_0) \\ 2P(t(n_1+n_2-2)\geqslant\vert t_0\vert)
μ1μ2δμ1μ2δμ1μ2=δ(σ12σ22未知)\mu_1-\mu_2\leqslant\delta \\ \mu_1-\mu_2\geqslant\delta \\ \mu_1-\mu_2=\delta \\ (\sigma_1^2\ne\sigma_2^2\text{未知}) T=XYδS12n1+S22n2T=\cfrac{\overline{X}-\overline{Y}-\delta}{\sqrt{\cfrac{S_1^2}{n_1}+\cfrac{S_2^2}{n_2}}} μ1μ2>δμ1μ2<δμ1μ2δ\mu_1-\mu_2>\delta \\ \mu_1-\mu_2<\delta \\ \mu_1-\mu_2\ne\delta Ttα(k)Ttα(k)Ttα/2(k)k=min(n11,n21)T\geqslant t_\alpha(k) \\ T\leqslant-t_\alpha(k) \\ \vert T\vert\geqslant t_{\alpha/2}(k) \\ k=min(n_1-1,n_2-1) t0=xyδs12n1+s22n2t_0=\cfrac{\overline{x}-\overline{y}-\delta}{\sqrt{\cfrac{s_1^2}{n_1}+\cfrac{s_2^2}{n_2}}} P(t(k)t0)P(t(k)t0)2P(t(k)t0)P(t(k)\geqslant t_0) \\ P(t(k)\leqslant t_0) \\ 2P(t(k)\geqslant\vert t_0\vert)
σ2σ02σ2σ02σ2=σ02(μ未知)\sigma^2\leqslant\sigma_0^2 \\ \sigma^2\geqslant\sigma_0^2 \\ \sigma^2=\sigma_0^2 \\ (\mu\text{未知}) χ2=(n1)S2σ02\chi^2=\cfrac{(n-1)S^2}{\sigma_0^2} σ2>σ02σ2<σ02σ2σ02\sigma^2>\sigma_0^2 \\ \sigma^2<\sigma_0^2 \\ \sigma^2\ne\sigma_0^2 χ2χα2(n1)χ2χ1α2(n1)χ2χα/22(n1),orχ2χ1α/22(n1)\chi^2\geqslant \chi^2_\alpha(n-1) \\ \chi^2\leqslant\chi^2_{1-\alpha}(n-1) \\ \chi^2\geqslant\chi^2_{\alpha/2}(n-1),or \\ \chi^2\leqslant\chi^2_{1-\alpha/2}(n-1) χ02=(n1)s2σ02\chi_0^2=\cfrac{(n-1)s^2}{\sigma_0^2} P(χ2(n1)χ02)P(χ2(n1)χ02)2min(P(χ2(n1)χ02),1P(χ2(n1)χ02))P(\chi^2(n-1)\geqslant\chi_0^2) \\ P(\chi^2(n-1)\leqslant\chi_0^2) \\ 2min(P(\chi^2(n-1)\leqslant\chi_0^2), \\ 1-P(\chi^2(n-1)\leqslant\chi_0^2))
σ12σ22σ12σ22σ12=σ22(μ1,μ2未知)\sigma_1^2\leqslant\sigma_2^2 \\ \sigma_1^2\geqslant\sigma_2^2 \\ \sigma_1^2=\sigma_2^2 \\ (\mu_1,\mu_2\text{未知}) F=S12S22F=\cfrac{S_1^2}{S_2^2} σ12>σ22σ12<σ22σ12σ22\sigma_1^2>\sigma_2^2 \\ \sigma_1^2<\sigma_2^2 \\ \sigma_1^2\ne\sigma_2^2 FFα(n11,n21)FFα(n11,n21)FFα/2(n11,n21),orFF1α/2(n11,n21)F\geqslant F_\alpha(n_1-1,n_2-1) \\ F\leqslant F_\alpha(n_1-1,n_2-1) \\ F\geqslant F_{\alpha/2}(n_1-1,n_2-1),or \\ F\leqslant F_{1-\alpha/2}(n_1-1,n_2-1) f0=s12s22f_0=\cfrac{s_1^2}{s_2^2} P(F(n11,n21)f0)P(F(n11,n21)f0)2min(P(F(n11,n21)f0),1P(F(n11,n21)f0))P(F(n_1-1,n_2-1)\geqslant f_0) \\ P(F(n_1-1,n_2-1)\leqslant f_0) \\ 2min(P(F(n_1-1,n_2-1)\leqslant f_0), \\ 1-P(F(n_1-1,n_2-1)\leqslant f_0))
μD0μD0μD=0(成对数据)\mu_D\leqslant0 \\ \mu_D\geqslant0 \\ \mu_D=0 \\ (\text{成对数据}) T=DSD/nT=\cfrac{\overline{D}}{S_D/\sqrt{n}} μD>0μD<0μD0\mu_D>0 \\ \mu_D<0 \\ \mu_D\ne0 Ttα(n1)Ttα(n1)Ttα/2(n1)T\geqslant t_\alpha(n-1) \\ T\leqslant t_\alpha(n-1) \\ \vert T\vert\geqslant t_{\alpha/2}(n-1) t0=dsd/nt_0=\cfrac{\overline{d}}{s_d/\sqrt{n}} P(t(n1)t0)P(t(n1)t0)2P(t(n1)t0)P(t(n-1)\geqslant t_0) \\ P(t(n-1)\leqslant t_0) \\ 2P(t(n-1)\geqslant \vert t_0\vert)

方差分析、拟合优度检验

原假设H0H_0 检验统计量 备择假设H1H_1 拒绝域 检验统计量的取值 P_P\_
β1==βp=0\beta_1=\cdots=\beta_p=0 F=SSR/pSSE/(np1)F=\cfrac{SS_R/p}{SS_E/(n-p-1)} β1,,βp0\beta_1,\cdots,\beta_p ≢ 0 FFα(p,np1)F\geqslant F_\alpha(p,n-p-1) f0=SSR/pSSE/(np1)f_0=\cfrac{SS_R/p}{SS_E/(n-p-1)} 未知\text{未知}
βj=0\beta_j=0 Tj=βj^SSEnp1cj+1,j+1,j=1,2,,pT_j=\cfrac{\widehat{\beta_j}}{\sqrt{\cfrac{SS_E}{n-p-1}}\sqrt{c_{j+1,j+1}}},j=1,2,\cdots,p βj0\beta_j\ne0 Ttα/2(np1)\vert T\vert\geqslant t_{\alpha/2}(n-p-1) tj=βj^SSEnp1cj+1,j+1,j=1,2,,pt_j=\cfrac{\widehat{\beta_j}}{\sqrt{\cfrac{SS_E}{n-p-1}}\sqrt{c_{j+1,j+1}}},j=1,2,\cdots,p 未知\text{未知}
F(x)=F0(x)F(x)=F_0(x) χ2=i=1n(ninpi^)2npi^n>50,npi^5\chi^2=\sum_{i=1}^n\cfrac{(n_i-n\widehat{p_i})^2}{n\widehat{p_i}} \\ n>50, n\widehat{p_i} \geqslant 5 F(x)F0(x)F(x)\ne F_0(x) χ2χα2(kr1)k为分类数,r为未知参数个数\chi^2\geqslant \chi^2_\alpha(k-r-1)\\ k\text{为分类数}, r\text{为\text{未知}参数个数} χ2=i=1n(ninpi^)2npi^\chi^2=\sum_{i=1}^n\cfrac{(n_i-n\widehat{p_i})^2}{n\widehat{p_i}} P(χ2(kr1)χ02)P(\chi^2(k-r-1)\geqslant \chi^2_0)

方差分析表

方差来源 自由度(df) 平方和(SS) 均方(MS) F
回归 pp SSR=i=1n(yi^y)2SS_R=\sum_{i=1}^{n}(\widehat{y_i}-\overline{y})^2 SSR/pSS_R/p F=SSR/pSSE/(np1)F=\cfrac{SS_R/p}{SS_E/(n-p-1)}
残差 np1n-p-1 SSE=i=1n(yiy^)2SS_E=\sum_{i=1}^{n}(y_i-\widehat{y})^2 SSE/(np1)SS_E/(n-p-1)
总和 n1n-1 SST=i=1n(yiy)2SST=SSR+SSESS_T=\sum_{i=1}^{n}(y_i-\overline{y})^2 \\ SS_T=SS_R+SS_E